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Abstract The publication of the Hipparcos catalog has drawn new attention to the problem of the
determination of proper motions of stars that are components of binary or multiple systems. With
only three years of observational data, it was recognized that unmodeled binary motion could affect
the measured proper motions of many stars in the Hipparcos catalog. In fact, the problem occurs
on many time scales and undoubtedly affects many catalogs. This note presents some analytical
expressions for the effects of binary motion on proper motions when the orbital period is at least
several times the span of observations.
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1. Introduction

The publication of the Hipparcos catalog has drawn new attention to the problem of the determination
of proper motions of stars that are components of binary or multiple systems. With only about three years
of observational data, it was recognized that unmodeled binary motion could affect the proper motions of
many stars in the Hipparcos catalog. Most of the concern has been with binaries without known orbits that
may have periods of several years to several decades. Yet almost half of all known binary systems have
semimajor axes of 50 AU or more, implying, for solar-mass components, periods of a century or more. Such
systems can create problems when observational catalogs made years or decades apart are combined (as in
Tycho 2) in an effort to provide improved proper motions. Thus, the binary-motion problem occurs on many
time scales and may affect, to some degree, a significant fraction of the data in compiled catalogs.

In this paper we look at a particularly pernicious piece of this problem: stellar paths that are almost,
but not quite, linear. We provide a simplified model of astrometric observation analysis to quantify the
problem. We then use the results to estimate the range of orbital semimajor axes that the observations are
sensitive to, as a function of observational accuracy and time span, and the distance and mass of the system.

2. Simplified Development of Proper Motion Estimation

In this section we develop a simple model of how analysis of astrometric observations for stellar proper
motion determination can become contaminated by an unmodeled acceleration. The object is to provide
approximate expressions that will allow us to determine the order of magnitude of the effect as well as its
qualitative nature.

The equation of motion of a body can be expressed as a Taylor series in vector form as

P(t) = P0 + V0t + 1
2Zt2 + · · · (1)

where P0 and V0 are the body’s position and velocity at time t = 0, and Z is the acceleration. time
derivative. For a star where the acceleration is due to the gravitational attraction of a companion (either
seen or unseen), Z = (GM/R2)R̂, where G is the constant of gravitation and M and R are the mass and
distance of the companion. The unit vector R̂ points toward the companion. If we assume a constant
acceleration — i.e., truncate eq. (1) after the third term — we are limited to considering a small segment
of the orbit. This is the problem we wish to investigate: the parabolic approximation constitutes a “weak
curvature” case.

Let the star’s motion, projected onto the plane of the sky, be p(t). The plane of the sky is orthogonal
to the line of sight unit vector n, so we have

p(t) = P(t)− (P(t) · n)n

= (P0 + V0t + 1
2Zt2)− ((P0 + V0t + 1

2Zt2) · n)n

= P0 + V0t + 1
2Zt2 − (P0 · n)n− (V0 · n)tn− 1

2 (Z · n)t2n

= [P0 − (P0 · n)n] + [V0 − (V0 · n)n]t + 1
2 [Z− (Z · n)n]t2

(2)
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That is, the star’s motion in the plane of the sky can be represented as

p(t) = p0 + v0t + 1
2zt2 (3)

where p0 is P0 projected onto the sky = P0 − (P0 · n)n
v0 is V0 projected onto the sky = V0 − (V0 · n)n
z is Z projected onto the sky = Z− (Z · n)n

The vectors p(t), p0, v0, and z have no component along the line of sight n and are therefore 2-vectors in a
coordinate system on the plane of the sky.

In standard current practice, a star’s motion is expressed as p′(t) = p′0 + v′t. Here, v′ represents
the star’s proper motion as conventionally defined — assumed constant, hence without subscript. (In this
development we are ignoring terms for the curvature of the sky and are assuming that aberration and parallax
have already been removed from the data.) It is tempting to think of eq. (3) as a simple extension of the
conventional expression, carried to higher order. But v0 in eq. (3) does not correspond to proper motion. For
a gravitationally-bound binary, proper motion properly refers to the projection on the sky of the (constant)
space velocity of the center of mass of the system. In eq. (3), v0 is the instantaneous linear component of the
star’s apparent motion, which is the sum of the proper motion of system plus the projected orbital velocity
of the star (at t=0) around the center of mass. Determination of the proper motion of the system would
require observations of the star spanning nearly an orbital period, or observations of both the star and its
companion over a shorter period together with an estimate of their mass ratio.

But here we wish to consider a series of observations where the orbital motion of the star is not obvious.
Consider an observation of the star’s position, pi, taken at time ti, with a measurement error ei (all vectors
are now in the plane of the sky). Then pi = p0 + v0ti + 1

2zt
2
i + ei. But if we have no knowledge of the

acceleration, we will model the star’s motion in the conventional way as p′(t) = p′0 + v′t. The difference
between the observation and this incomplete model of the star’s motion at time ti is then

e′i = p0 + v0ti + 1
2zt

2
i + ei − p′0 − v′ti (4)

Compared to our incomplete model, the observation will appear to be in error by an amount e′i. This error
is the sum of the random error of observation and the systematic error resulting from the use of the incorrect
model. Despite the fact that it is not a purely stochastic quantity, it provides a basis for investigating what
would happen if the incomplete model were fit to a set of N two-dimensional observations using least squares.
Let us take the common situation where the measurement errors ei are assumed to all have approximately
the same magnitude 〈e〉 and the observations are therefore all given unit weight. In such a case, the quantity
that would be minimized is the sum of e′2i over all observations. The method would determine the position
p′0 (at time t=0) and proper motion v′ that minimize

∑
e′2i . The quantities p′0 and v′ are not particularly

interesting in themselves but the differences between these quantities and the corresponding ones from eq. (3)
for this case are key to further analysis. That is, we are interested in ∆p = p0−p′0 and ∆v = v0−v′. These
quantities measure in some sense the “error” in the position-at-epoch and proper motion derived from the
linear fit.

As noted above, the quantity to be minimized is
∑

e′2i , the sum of the squares of the post-linear-fit
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residuals, which will be denoted X2:

X2 =
N∑

i=1

e′2i =
N∑

i=1

[p0 + v0ti + 1
2zt

2
i + ei − p′0 − v′ti]2

=
N∑

i=1

[(p0 − p′0) + (v0 − v′)ti + 1
2zt

2
i + ei]2

=
N∑

i=1

[∆p + ∆vti + 1
2zt

2
i + ei]2

=
N∑

i=1

[∆p2 + ∆p ·∆vti + 1
2∆p · zt2i + ∆p · ei

+ ∆p ·∆vti + ∆v2t2i + 1
2∆v · zt3i + ∆v · eiti

+ 1
2∆p · zt2i + 1

2∆v · zt3i + 1
4zt

4
i + 1

2z · eit
2
i

+ ∆p · ei + ∆v · eiti + 1
2z · eit

2
i + e2

i ]

=
N∑

i=1

[∆p2 + 2∆p ·∆vti + ∆p · zt2i + ∆v2t2i + ∆v · zt3i + 1
4z

2t4i

+ 2∆p · ei + 2∆v · eiti + z · eit
2
i + e2

i ]

(5)

The terms in the last row, except for e2
i , disappear in summation because the ei are randomly oriented. We

are left with

X2 = N∆p2 + 2∆p ·∆v
N∑

i=1

ti + ∆p · z
N∑

i=1

t2i + ∆v2
N∑

i=1

t2i + ∆v · z
N∑

i=1

t3i + 1
4z

2
N∑

i=1

t4i +
N∑

i=1

e2
i (6)

Suppose N is large and the observations are evenly distributed in time, at intervals ∆t, from t = 0 to
t = T . Then N = T/∆t and in the limit N →∞ we have

N∑

i=1

ti → T 2

2∆t
,

N∑

i=1

t2i →
T 3

3∆t
,

N∑

i=1

t3i →
T 4

4∆t
, and

N∑

i=1

t4i →
T 5

5∆t

Substituting the above in eq. (6), we obtain

X2 =
1

∆t
(∆p2T + ∆p ·∆vT 2 + 1

3∆p · zT 3 + 1
3∆v2T 3 + 1

4∆v · zT 4 + 1
20z

2T 5) +
N∑

i=1

e2
i (7)

If we define a coordinate system (x, y) in the plane of the sky, then in that system ∆p, ∆v, and z are
2-vectors:

∆p =
(

∆px

∆py

)
∆v =

(
∆vx

∆vy

)
z =

(
ax

ay

)

The components will normally be expressed in angular units (see later discussion).

In eq. (7), the last term is a constant, as are the acceleration z and the time parameters ∆t and T .
We seek values for the components of ∆p and ∆v that minimize X2. The range of values that X2 takes
on can be thought of as a surface within the 4-space defined by ∆px, ∆py, ∆vx, and ∆vy. If we define
∇ = (∂/∂∆px, ∂/∂∆py, ∂/∂∆vx, ∂/∂∆vy), then the condition for minimizing X2 is ∇X2 = 0, leading to
the normal equation

∂X2

∂∆px

=
∂

∂∆px

[ 1
∆t

(∆p2T + ∆p ·∆vT 2 + 1
3∆p · zT 3 + 1

3∆v2T 3 + 1
4∆v · zT 4 + 1

20z
2T 5) +

N∑

i=1

e2
i

]
= 0 (8)
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and similarly for ∂X2/∂∆py, ∂X2/∂∆vx, and ∂X2/∂∆vy. If we expand the dot products in eq. (8), (for
example, ∆p · ∆v = ∆px∆vx + ∆py∆vy), perform the indicated partial differentiations, and multiply by
∆t, we obtain

2∆pxT + ∆vxT 2 + 1
3axT 3 = 0 (9a)

2∆pyT + ∆vyT 2 + 1
3ayT 3 = 0 (9b)

∆pxT 2 + 2
3∆vxT 3 + 1

4axT 4 = 0 (9c)

∆pyT 2 + 2
3∆vyT 3 + 1

4ayT 4 = 0 (9d)

Equations (9a) and (9c) can be solved for ∆px and ∆vx:

∆px = 1
12axT 2 and ∆vx = − 1

2axT

Equations (9b) and (9d) are identical to (9a) and (9c), respectively, except that the y components of the
vectors have replaced the x components, so it must be true that

∆py = 1
12ayT 2 and ∆vy = − 1

2ayT

Obviously these results can be expressed as

∆p = 1
12zT 2 and ∆v = − 1

2zT (10)

Since the vectors ∆p, ∆v, and z are collinear, any dot products among them would simply equal the
arithmetic product of their respective magnitudes. Also e2

i = e2
i . Therefore we can dispense with the vector

notation at this point and use use the symbols ∆p, ∆v, and z for the vector magnitudes. Equation (10) then
becomes

∆p = 1
12zT 2 and ∆v = − 1

2zT (11)

The difference between the actual motion of the star and the linear model as a function of time t is in
the direction of z (+ or –). The acceleration z is always toward the companion, and for z to be considered
essentially constant, the companion must be sufficiently far away that neither its direction nor distance
change significantly over the short orbital arc we are considering. The magnitude of the difference between
the actual motion and the linear model is

δ = ∆p + ∆vt + 1
2zt2 = 1

12zT 2 − 1
2zT t + 1

2zt2 (12)

where z = |z|. The function δ has an extremum (dδ/dt=0) at t=T/2, in the middle of the span of observations,
where δ = −zT 2/24. At the beginning and end of the span of observations (t=0 and t=T ), δ = zT 2/12. The
total range of δ over the time interval of interest is thus zT 2/8. The locus of actual motion of the star on
the sky crosses the least-squares-determined straight where the δ function has zeros, at t = T/2±

√
T/12 =

0.211T and 0.789T .

We will refer to zT 2/24, which is the absolute value of δ at t = T/2, as the amplitude of the modelling
error from the linear approximation, designated by h. The total range of δ over the time span of interest
is 3h. In the following developments we will use h as the metric for determining the sensitivity of the N
observations to the acceleration. Intuitively, it would seem that if h is a few times 〈e〉/√N , where 〈e〉 is the
mean error of a single observation (unit weight), then the observations should be at least marginally sensitive
to the acceleration. More precisely, if we compute the ratio of the post-fit sum-of-squares X2 for the linear
and quadratic models, expressed as a function of h, we can use the F-test to determine the significance of
the acceleration term.

To do this, we revisit eq. (7) for X2, substituting in it the expressions for ∆p and ∆v from eq. (10).
We obtain the post-fit sum-of-squares for the case of the linear fit to accelerated motion:

X2 =
1

∆t
( 1
144z2T 5 − 1

24z2T 5 + 1
36z2T 5 + 1

12z2T 5 − 1
8z2T 5 + 1

20z2T 5) +
N∑

i=1

e2
i

=
1

∆t
( 1
720z2T 5) +

N∑

i=1

e2
i

(13)
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Here, the ei are the lengths of the 2D error vectors, that is, e2
i = ei ·ei. In the large-N case we are considering,

N = T/∆t. But 〈e〉 is defined such that
∑N

i=1 e2
i = N〈e〉2, so eq. (13) becomes

X2 = N

(
1

720
z2T 4 + 〈e〉2

)
(14)

and the fractional increase in X2 (the “extra sum of squares”) due to the modeling error from the linear
approximation (and assuming no other modeling errors) would be

∆X2

X2
=

1
720

z2T 4

〈e〉2 =
(

1
26.8

zT 2

〈e〉
)2

≈
(

h

〈e〉
)2

(15)

where z and 〈e〉 are expressed in the same angular units, and h is the previously defined amplitude of the
modeling error, zT 2/24. Suppose we set h = g〈e〉/√N , where g is a factor to be determined; then the
fractional increase in X2 is g2/N . The ratio F that is subject to the F-test is the fractional increase in X2

(= fractional increase in χ2, since all observations have a an uncertainty of 〈e〉) times the number of degrees
of freedom, ν, in the quadratic fit:

F =
∆X2

X2/ν
=

g2

N
ν (16)

If N is sufficiently large that ν ≈ N , then F ≈ g2. For an F-test probability of 95%, F would have to be
about 4 for a wide range of degrees of freedom (F=4.17 for ν=30, 3.92 for ν=120, 3.84 for ν=∞). Thus
we require g = 2, i.e., h = 2〈e〉/√N . This result is not surprising, since a “two sigma” value for a model
parameter determined from Gaussian-distributed data has a 95% chance of being significantly different from
zero. If we wish a more stringent test, we can always set g=3 (probability > 99%); the value of g can be
adjusted according to the acceptable ratio of false positives / false negatives in the results.

3. Estimating the Magnitude of the Effect

This section provides an assessment of the range of orbital semimajor axes that astrometric measure-
ments of a given accuracy and time span are sensitive to. This result would form the basis for any estimate
of the fraction of stars whose observations would be affected by accelerated motion. The development given
above treats the statistics of stellar loci at the weak curvature limit — those representing a very small part
(a few percent) of a binary orbital period. The strong curvature limit might be plausibly defined by the point
at which a reliable orbital solution becomes feasible. That point will be somewhat arbitrarily defined here
as being half an orbital period, although preliminary orbital solutions are often formed from observations
spanning much less time.

To assess the practical effect of unmodeled accelerations, a reasonable approach is to compare, for each
candidate binary system, the amplitude of the linear-track modeling error, h, to some detection criterion ε
that we are free to choose. The results of the previous section show that a reasonable choice for ε is 2〈e〉/√N ,
where 〈e〉 is the mean error of a single observation and N is the number of observations. (More correctly,
the denominator should be

√
ν, where ν is the number of degrees of freedom in the quadratic solution, but

we are assuming that N is sufficiently large that ν ≈ N .)

The value of h is defined for a specific time period of duration T , and we will use the expression
h = zT 2/24 derived in the previous section. Although this expression somewhat underestimates the effect
of orbital motion on the data for stars that traverse a significant fraction of their orbits in time T , it is the
appropriate expression to use for the weak curvature limit.

Our task, then, is to determine over what range of conditions h > ε. Since h is proportional to the
star’s projected acceleration on the sky, z, we must first relate z to the magnitude of the true acceleration
of the star in 3-space, |Z|. The true acceleration can be expressed in terms of the physical parameters of the
binary system, and we can then use what is known about the distribution of these physical parameters to
estimate the frequency of significant acceleration effects on astrometric data.
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The magnitude of the acceleration projected onto the plane of the sky is related to the magnitude of
the true 3-D acceleration vector by z = (sin θ)|Z|/d, where θ is the angle between the direction of Z and the
line of sight, and d is the distance to the star. The parallax, p, is 1/d, so our h > ε condition becomes

1
24

(sin θ) |Z|T 2 p > ε (17)

The acceleration magnitude is related to the physical state of the binary system through |Z| = GM/R2,
where R is the instantaneous distance between components, and M is either (a) the mass of the companion,
if the star’s motion is measured in an inertial system, or (b) the total mass of the system, if the motion is
measured with respect to the companion. If we use units of AU, years, and solar masses, the gravitational
constant G = 4π2 and the true acceleration |Z| is expressed in AU year−2. If d is in parsecs and p in
arcseconds, then z is in units of arcsec year−2 and h is in arcsec.

The distance R is obviously closely related to the semimajor axis of the orbit, a. If we write R = a(R/a)
(for reasons that will become apparent shortly) our condition for detection of weak curvatures becomes

4π2 (sin θ)M T 2 p

24
[
a

(
R
a

)]2 > ε (18)

The strong curvature limit is defined by P ≥ 2T , where P is the orbital period, given by P = a3/2/
√

M ,
where M is the total mass of the system. For this limit we therefore have the condition a3/2/

√
M > 2T .

Rearranging the expressions for the weak and strong curvature limits, we obtain the limits on the semimajor
axis that define the fraction of stars of interest:

(2T )2/3 M1/3 < a <
πT(
R
a

)
(

M sin θ

6

)1/2 (p

ε

)1/2

(19)

Note that M on the left and right sides can have different meanings: on the left it is always the total mass
of the system; on the right it is the total mass of the system only if the motion of the star is measured with
respect to its companion. If the star’s motion is measured with respect to an inertial frame then M on the
right is the mass of the companion. The expressions therefore can be used for investigating planet detection
by the astrometric method, in the long-period limit, simply by setting M on the right side to be the planet’s
presumed mass.

We have chosen ε = 2〈e〉/√N , which is twice the 1σ uncertainty of any angular variable derived from
the observations (assuming N ≈ ν). Therefore, the quantity p/ε appearing on the right side of eq. (19) can
be thought of as half the signal-to-noise ratio of the parallax: p/ε = 1

2p/σp. (This holds only for the case
where the parallax of the star is determined using the same set of observations used for the proper motion
and acceleration determination.) If we fix the p/σp ratio, eq. (19) provides the semimajor axis limits for stars
in a certain distance shell; for example, if we wish to consider stars with parallaxes good to 10% (p/σp = 10)
when σp ≈ 10−3 arcsec, we will obtain the limits on a for stars at a distance of approximately 100 pc. It
is interesting to note in this regard that if we have a parallax-limited sample of stars uniformly distributed
through space, the average parallax is only 1.5 times the minimum parallax. In such a case, and assuming
that the minimum parallax is σp, then p/ε < 1 for most stars in the sample, and the upper limit on a will
generally be quite restricted. However, most catalogs are magnitude-limited and their stellar distributions
are much more concentrated toward the Sun. In such catalogs, and in special samples of nearby stars, there
will be enough stars with p/ε > 1 to provide a useful range of detectable semimajor axes.

To assess quantitatively how many stars fall between the limits defined by eq. (19), we need to know
something about the distributions of sin θ, a, M , and R/a. Two of the four distributions, for sin θ and R/a,
are easy to deal with. Although the projection factor sin θ is unknown for any specific binary system, we
can assume that the direction of the vector separating the two components is randomly distributed over 4π
steradians. For such a distribution, the average projection factor onto any given plane is π/4 ≈ 0.79, the
median projection is 0.87, and 71% of such vectors have projection factors of 0.7 or more. Therefore we can
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adopt π/4 as the average value of the projection factor sin θ, with some confidence that the average is also
typical.

The distribution of R/a values presents a similar situation. For circular orbits, R/a=1 at all times.
For stars in eccentric orbits, R/a varies between 1–e and 1+e, where e is the orbital eccentricity. However,
binary stars spend more time near apastron than periastron, and over an orbital period the average value of
R/a is 1 + 1

2e2. Since this ratio can only take on values between 1 and 1.5, we can adopt an average value
of R/a of 1.3 without much concern about the distribution of eccentricities.

Inserting the appropriate numerical quantities, eq. (19) becomes

1.59 T 2/3 M1/3 < a < 0.88 T
(
M

p

ε

)1/2

(20)

Since ε = 2σp, the right side (upper limit to a) could also be expressed as 0.62T (M p/σp)1/2. As we expect,
the range of applicable a increases with T . For M = 1 and p/ε = 1, 7.4 ≤ a ≤ 8.7 if T = 10 and 34 ≤ a ≤ 87
for T = 100. These limits define the null set for T < 6.1 years for solar-mass binaries where the parallax is
at the limit of detection but do not preclude more massive or closer systems.

If we think about the astrometric method of detecting orbital motion in general, including both orbit
and acceleration solutions, the situation is this: at given distance, and for a given primary and companion
mass, the astrometric sensitivity increases with semimajor axis, provided at least one full period is observed.
However, once only a fraction of a period can be observed, the astrometric sensitivity decreases with in-
creasing semimajor axis, because the observed motion becomes more linear. As the distance increases, the
width of the regime of detectable semimajor axes narrows, since the observational scatter corresponds to an
increasing linear scale. Thus there is a reduced range of semimajor axes that are greater than the scatter
but less than that for which the orbital motion is statistically indistinguishable from a straight line.
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